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Abstract

Purpose – The purpose of this paper is to develop an empiricism free, first principle-based model to
simulate fluid flow and heat transfer through porous media.

Design/methodology/approach – Conventionalapproaches to the problemare reviewed. Amulti-scale
approach that makes use of the sample simulations at the individual pore levels is employed. The effect of
porous structures on the global fluid flow is accounted for via local volume averaged governing equations,
while the closure terms are accounted for via averaging flow characteristics around the pores.

Findings – The performance of the model has been tested for an isothermal flow case. Good
agreement with experimental data were achieved. Both the permeability and Ergun coefficient are
shown to be flow properties as opposed to the empirical approach which typically results in constant
values of these parameters independent of the flow conditions. Hence, the present multi-scale approach
is more versatile and can account for the possible changes in flow characteristics.

Research limitations/implications – Further validation including non-isothermal cases is
necessary. Current scope of the model is limited to incompressible flows. The methodology can
accommodate extension to compressible flows.

Originality/value – This paper proposes a method that eliminates the dependence of the numerical
porous media simulations on empirical data. Although the model increases the fidelity of the
simulations, it is still computationally affordable due to the use of a multi-scale methodology.

Keywords Flow, Fluid dynamics, Porous materials
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Nomenclature

A ¼ cross-sectional area
Asf ¼ solid-fluid interfacial area
CE ¼ Ergun coefficient
dij ¼ Kronecker delta
1 ¼ porosity
K ¼ permeability
kf ¼ fluid phase thermal conductivity
ks ¼ solid phase thermal conductivity
_m ¼ mass flow rate
m ¼ dynamic viscosity
ni ¼ surface normal vector
p ¼ pressure

r ¼ fluid density
ReD ¼ Reynolds number based on pore

diameter
Re ffiffiffiKp ¼ Reynolds number based on

permeability
Tij ¼ stress tensor
T ¼ temperature
uD ¼ filter velocity
ui ¼ velocity vector
Vf ¼ volume of the fluid phase
V ¼ total volume
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1. Introduction
Porous materials are often used for the injector face plate of liquid rocket engines. Fuel
bleeds through the porous plate to aid in cooling of the injector face by transpiration. In
P&W’s RL10 engine and Space Shuttle Main Engine (SSME), Rigimesh porous
material is used (Sutton, 2003). Rigimesh can qualitatively be classified as a dense,
non-uniform, fibrous porous media (Figure 1). In the case of SSME, a 0.2500 thick
plate with about 9 percent void space is used. Our ultimate goal in this study is
accurate simulation of fluid flow and heat transfer through the Rigimesh material.
To achieve this, we need detailed knowledge of the material’s internal structure.

Fluid flows and associated heat and mass transfer through such porous media are
two-phase phenomena where one of the phases is solid and stationary. To simulate
such flows, interaction of fluid and solid phases at the scales as small as individual
pores of the material needs to be accounted for. Considering typically wide range of
length scales and complex geometries involved in porous media, analysis of each
individual pore can be very costly or even impossible. Thus, the modeling efforts in
this area dating back to Darcy’s (1856) experimental study in 1856 have mostly aimed
at empirically correlating the pore level flow effects to the bulk fluid motion. Darcy
experimented with gravity driven flow of water through a porous medium of loosely
packed, uniform sized particles. He related the pressure gradient to the average fluid
velocity, introducing an empirical factor called permeability:

27p ¼
m

K
uD ð1Þ

The permeability, K with the dimension of length2 is a measure of fluid flow
conductivity of the porous media. The filter velocity, uD, is defined as:

Figure 1.
Surface features of the
Rigimesh material used
in SSME
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uD ¼
_m

rA
: ð2Þ

Equation (1) is of first order and as such it only allows one condition to be applied at a
given boundary. This becomes a problem when the porous matrix is bounded by walls
or adjacent to an open flow domain. Typical practice for walls is to apply a slip
boundary condition by setting only the velocity component normal to the wall as zero.
For the open/porous domain interface, an empirical boundary condition is derived by
Beavers and Joseph (1967).

An alternative formulation governing the fluid flow through porous media is
suggested by Brinkman (1947, 1948) by adding a viscous diffusion term to the Darcy’s
law, obtaining a second order equation:

2›ip ¼
m

K
uDi

þ m0›2
j uDi

; ð3Þ

where m0 is termed as effective viscosity. Lundgren (1972) studies and justifies the
Brinkman equation and connects the effective viscosity, m0, to the porosity of the solid
matrix. Porosity, 1, is defined as the volume fraction of the void space in a given porous
media. Brinkman equation was derived for a dilute arrangement of spheres and thus
deemed valid for high porosities, i.e. 1 . 0.8 (Rubinstein, 1982). For lower porosity
cases, the Darcian contribution dominates and the viscous diffusion term serves the
purpose of raising the order of the equation so that the no-slip condition can be applied
at bounding walls. Therefore, it is a common practice to set the effective viscosity, m0,
equal to the fluid viscosity, m.

The linear relationship represented by Darcy’s law fails when the flow Reynolds
number is high enough for inertial effects to become comparable to Darcian effects.
Macdonald et al. (1979) examines several experimental results and concludes that the
inertial flow regime starts roughly when a Reynolds number based on permeability,
Re ffiffiffiKp ¼ ruD

ffiffiffiffi
K

p
, is unity. At higher Reynolds numbers, inertial effects become

comparable to Darcian effects. A correction for this flow regime is suggested by
Forchheimer (1901) and presented in the following form by Ward (1964):

2›ip ¼
m

K
uDi

þ
CEffiffiffiffi
K

p rjuDi
juDi

; ð4Þ

where CE is called the Ergun (1952) coefficient. It is also widely used as CF which
stands for Forchheimer coefficient.

Equation (4) involves two parameters; permeability, K, and Ergun coefficient, CE,
which need to be found experimentally for a specific type of porous media. Various
methods have been suggested to relate these parameters to the geometrical properties of
the porous material such as the porosity and a length scale. Dullien (1979) suggests
modeling the porous media as a network of conduits. Using the Hagen-Poiseuille
solution, Darcy’s law (equation (1)), and total pressure drop, he relates the permeability
to porosity and the conduit volumes and diameters. In a similar approach, porous media
is modeled as periodic arrangements of cylinders (Sparrow and Loeffler, 1959;
Happel and Brenner, 1986) or spheres (Happel and Brenner, 1986) so that the creeping
flow solution is benefited in relating the permeability to the porosity, particle diameters
and inter-particle gaps. Dullien (1979) also suggests a widely used permeability model
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based on the Carman-Kozeny hydraulic radius theory (Carman, 1937). In this model,
permeability is related to the porosity, hydraulic radius and Kozeny constant which
depends on the pore shape. For the Ergun coefficient, Ward (1964) suggests a universal
constant value of 0.55. These heuristic approaches summarized here are mostly limited
in range of porous media types and suffer from a common underlying assumption of
permeability and Ergun coefficient being pure geometric parameters. We will show later
that this is in fact not the case. Detailed summary on this kind of approaches can be
found in Dullien (1979), Kaviany (1991) and Nield and Bejan (1992).

The modeling approaches we have mentioned so far have been empirical,
semi-empirical or ad hoc. A more fundamental approach has been developed by
Slattery (1969, 1981) and Whitaker (1969, 1996) by averaging the governing equations
over local volume elements that contain both fluid and solid phases. Although this will
reduce the complexity of the problem, the information lost by filtering the fine scale
flow structures will cause an unclosed set of governing equations. Whitaker (1996) and
Nozad et al. (1985) also offer closure methodologies for the averaged momentum
and energy equations, respectively. Local volume averaging method has gained
widespread popularity in modeling fluid flow and heat transfer through porous media.
Conventionally, the resulting closure terms in the averaged momentum equations are
heuristically linked (Vafai and Tien, 1981) to the relations proposed by Darcy and
Ergun which require empirical determination of the parameters K and CE.

Cheng and Minkowycz (1977), on the other hand, developed another rigorous
formulation by introducing a similarity solution for Darcian free convection along a
boundary layer developing in a fluid saturated porous medium adjacent to a heated
vertical wall. This approach is later extended to combined free and forced convection
about inclined walls (Cheng, 1977), non-Darcian (inertial) regime (Bejan and
Poulikakos, 1984), mixed convection-conduction problems (Liu et al., 1986) and
many other boundary layer type flows. An inclusive coverage of these methods can be
found in Nield and Bejan (1992).

To develop non-empirical predictive capabilities for porous media problems, we follow
a first principle based, multi-scale strategy. In our approach, the effect of porous structure
on the global fluid flow is accounted for via local volume averaged governing equations.
The resulting set of transport equations contains closure terms representing the statistical
flow characteristics around the pores. Most porous media can be thought of as a matrix of
repeating pore patterns. So, the closure terms can be deduced beforehand by direct
computation of the fluid flow in individual, representative pore samples for varying flow
speeds. Thus, we can avoid the excessive computational cost of direct simulation yet we
can produce accurate numerical predictions completely free of empiricism.

In this paper, we first describe the issues related to the characterization of the
Rigimesh material. Then, we review derivation of local volume averaged governing
equations as well as closure methodologies. The developed model is incorporated into
Navier-Stokes solvers (Thakur et al., 2002; Kamakoti et al., 2006; Shyy, 1994) and
assessed using a recent experiment by Tully et al. (2005) motivated by the liquid rocket
engine applications.

2. Rigimesh characterization
Rigimesh is a porous material with sintered multiple layers of stainless steel
woven-wire-meshes. Bonding of fibers at each contact point due to the sintering
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process provides rigidity and thus allows finer fiber diameters to be employed.
Finer fiber diameters in effect mean more surface area for a given volume or porosity.
These properties make Rigimesh an appropriate fit for the applications that demand
high-cooling efficiency and rigidity. One such area is the injector face plate of liquid
propellant rocket engines.

In order to develop high fidelity models for the simulation of flow and heat transfer
through the Rigimesh media, precise understanding of the inner topology as well as the
inner dimensions is essential.

In order to characterize the Rigimesh structure, a plate sample of 5.8 mm thickness
is examined. Although the surface was hinting a woven structure, examining the
cross-section was needed to identify the orientation of layers. In order to get a clean
cross-sectional view of the material, a plate sample is fractured by bending. Although
the bending process caused elongation and distortion of the fibers, the cross-section
view obtained (Figure 2) gave valuable clues about the inner topology.

A Rigimesh specimen was analyzed using CT scan. Unfortunately, the CT images did
not have enough resolution to offer more information about the material. The surface
properties of the Rigimesh were also examined by the contact profilometer measurement
technique. A sensitive needle is traversed along the surface of the Rigimesh plate while
maintaining contact. Position of the needle tip is recorded every 0.5mm for a 10 mm
span. Lin and Hu (2007) have conducted the measurements. Their results show that the
average distance between the peaks is 0.42 mm which is a measure of distance between
fiber axes on the surface. The outcome is shown in Figure 3.

The information obtained thus far about the detailed Rigimesh structure helps to
illustrate some aspects of Rigimesh; more efforts are needed to fully characterize the 3D
geometric structures.

3. Multi-scale porous media model
3.1 Local volume averaging
In the context of averaging the governing equations, first a sensible scale for an
averaging volume needs to be defined. An averaging volume should be sized small
enough in order to not filter global flow structures but it should be large enough so
as to guarantee containing both fluid and solid phases at all times. Such a volume is

Figure 2.
Rigimesh cross-section
after bending fracture
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called as a representative elementary volume (REV) (Figure 4). In our multi-scale
methodology, we further require an REV to be a repeated pattern over a portion of the
porous media.

The porosity, 1, is defined as the volume fraction of fluid phase in a porous media:

1 ¼
Vf

V
: ð5Þ

Note that the porosity might be defined locally or globally depending on the scale that
the volume fraction is calculated. In this study, however, we will assume that the
porosity is uniform over the porous media.

For an arbitrary property c defined for the fluid phase, volume averaging can be
carried out as follows (Whitaker, 1996):

Intrinsic averaging:

kcl f ¼
1

Vf

Z
Vf

cdV : ð6Þ

Figure 3.
Rigimesh surface
characterization

Distance Along Surface (mm)

Source: Lin and Hu (2007)
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Figure 4.
Schematic of a REV
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Superficial averaging:

kcl ¼
1

V

Z
Vf

cdV ¼ 1kcl f : ð7Þ

3.2 Averaging of the continuity equation
The local volume averaged continuity equation can be written as:

›krl
›t

þ k›iðruiÞl ¼ 0; ð8Þ

Note that we want to solve for volume averaged flow quantities. So we need to express
the second term in equation (8) in terms of krl and kuil. The necessary transformation
can be achieved via the volume averaging theorem (Slattery, 1969; Whitaker, 1969):

k›icl ¼ ›ikclþ
1

V

Z
Asf

cnidA: ð9Þ

Here, ni is the area normal pointing from the fluid phase towards the solid phase.
Using equation (9), equation (8) becomes:

›krl
›t

þ ›ikruilþ
1

V

Z
Asf

ruinidA ¼ 0: ð10Þ

Since the fluid will be at rest at the solid-fluid interface due to the no-slip condition, the
last term in equation (10) vanishes, and we get:

›krl
›t

þ ›ikruil ¼ 0: ð11Þ

For incompressible flows:

›ikuil ¼ 0: ð12Þ

Thus, the form of the continuity equation is unchanged by local volume averaging for
incompressible flows. In the case of compressible flows, we need to have a special
treatment for averaging of the product of the density and the velocity component.

The derivations hereafter assume incompressible flow with constant properties.
We further consider that the porosity is constant throughout the porous media.
These aspects can be generalized.

3.3 Averaging of the momentum equation
Averaging the momentum equation with no body forces yields:

r
›kuil
›t

þ rk›juiujl ¼ k›jTijl: ð13Þ

Once again, we need to transform the inertial and the stress terms using equation (9) so
that only the averages of the primitive flow variables are left in the final form instead
of averages of their combinations or derivatives.
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3.3.1 Inertial term. Following the approach of Gray (1975), we decompose the
velocity as:

ui ¼ kuil f þ u 0
i; ð14Þ

where ( )0 represents local deviation from intrinsic averaged values. Applying
equation (14) to the volume-averaged convective term:

k›juiujl ¼ k›jðu0i þ kujl f Þðu0j þ kujl f Þl

¼ k›jkuil f kujl f lþ k›ju0iu
0
jlþ k›jkuil f u0jlþ k›jkujl f u0il:

ð15Þ

Using equation (9):

k›juiujl¼›jkkuilf kujlf lþ
1

V

Z
Asf

kuilf kujlf njdAþk›ju0iu
0
jlþk›jkuilf u0jlþk›jkujlf u0il: ð16Þ

Third and fourth terms can also be treated similarly:

k›jkuil f u0jl ¼ ›jkkuil f u0jlþ
1

V

Z
Asf

kuil f u0jnjdA: ð17Þ

Noting that ku0jl ¼ 0 and u0j ¼ uj 2 kujl f :

k›jkuil f u0jl ¼
1

V

Z
Asf

kuil f ujnjdA 2
1

V

Z
Asf

kuil f kujl f njdA: ð18Þ

Since the velocity is zero at the solid-fluid interface due to no-slip condition, the first
integral term vanishes:

k›jkujl f u0jl ¼ 2
1

V

Z
Asf

kuil f kujl f njdA: ð19Þ

Thus, equation (16) becomes:

k›juiujl ¼ ›jkkuil f kujl f l2
1

V

Z
Asf

kuil f kujl f njdA þ k›ju0iu
0
jl: ð20Þ

For the first term on the right hand side of equation (20), note that kuil f kujl f is a
constant over the REV and average of the constant quantity is identical to itself.
We choose to retain the integral term in equation (20) as it is not identically zero unless
the pore geometry is symmetric.

The inertial term now becomes:

k›juiujl ¼ ›jkuil f kujl f þ k›ju0iu
0
jl2

kuil f kujl f

V

Z
Asf

njdA: ð21Þ

Here, the second and the third terms on the right hand side cannot be evaluated with
the sole knowledge of averaged flow quantities. These are two of the closure terms we
will encounter in the final averaged form of the momentum equation. It is useful to note
here that the integral term is identically zero for symmetric REV geometries.
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3.3.2 Stress term. For a Newtonian fluid, the stress tensor can be written as:

Tij ¼ 2pdij þ mð›iuj þ ›juiÞ: ð22Þ

Averaging the stress term of the momentum equation by making use of the volume
averaging theorem, i.e. Equation (9):

k›jTijl ¼ 2›ikplþ m›jk›iuj þ ›juilþ
1

V

Z
Asf

TijnjdA: ð23Þ

For the second term on the right hand side, the volume averaging theorem needs to be
applied once more:

›jk›iuj þ ›juil ¼ ›j›ikujlþ ›2
j kuilþ ›j

1

V

Z
Asf

ðuini þ ujnjÞdA

 !
: ð24Þ

For incompressible flows, ›jkujl ¼ 0 through the volume averaged continuity equation
(equation (12)). Also note that the integral term is identically zero due to the fact that
the fluid velocity is zero at the solid-fluid interface. Thus, the stress term becomes:

k›jTijl ¼ 2›ikplþ m›2
j kuilþ

1

V

Z
Asf

TijnjdA: ð25Þ

Using equations (13), (21) and (25), the averaged momentum equation becomes:

r
›kuil
›t

þ
r

1 2
›jkuilkujl ¼ 2›ikplþ m›2

j kuil2 r k›ju0iu
0
jl

1

V

Z
Asf

TijnjdA

þ
rkuil f kujl f

V

Z
Asf

njdA:

ð26Þ

All the terms of equation (26) except the last three on the right hand side are expressed
in terms of averaged velocity components. So, the knowledge of the bulk fluid motion
will suffice in evaluating them. However, the remaining three terms require a closure
methodology.

3.4 Closure of momentum equation
Direct computation of equation (26) necessitates complete knowledge of fluid flow
throughout the porous media. Most porous media applications require a high number
of pores for effective cooling or filtering. Therefore, the direct computation approach is
rarely feasible. Answer to this problem has conventionally been to link the closure
terms in equation (26) to the Ergun relation (equation (4)) (Vafai and Tien, 1981) as:

r
›kujl
›t

þ
r

12
›jkuilkujl ¼ 2›ikplþ m›2

j kuil2
m

K
kuil2

CEffiffiffiffi
K

p rjkuiljkuil: ð27Þ

While equation (4) only relates the bulk pressure drop to the total mass flow rate, the
solution of equation (27) provides local volume averaged flow field information
throughout the porous media. Equation (27) is very similar in form to the Navier-Stokes
equations. This enables easy handling of conjugate open flow (without porous media)
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and porous flow problems and permits application of no-slip conditions at the solid walls
bounding the solid matrix. By this treatment, the problem is reduced to determination of
two parameters, namely, permeability, K and Ergun coefficient, CE. Note that there is no
fundamental reason for equation (27) to be correct. Both experimental and heuristic
methods of estimating the permeability and the Ergun coefficient use the Darcy’s law
(equation (1)) or Ergun relation (equation (4)) as basis, making the rest of the terms in
equation (27) stand out as error terms. However, in most tightly packed porous media,
momentum loss is largely due to the pore scale flow structures. In these cases, porous
source terms are dominant over the other terms in the averaged momentum equation.
Thus, generally, equation (27) is expected to closely follow equation (4).

In closing the local volume averaged momentum equation, Whitaker (1996) develops a
more rigorous method. With the help of a series of scaling arguments, he derives
governing equations for the velocity and pressure deviations from the local averaged
value. He then develops boundary value problems for permeability and Forchheimer
tensors to be solved over a representative, periodic unit-cell of the porous media geometry.

In our multi-scale method, we take a similar but more basic route and directly
compute the closure terms appearing in local volume averaged momentum equation
(equation (26)). We take advantage of the fact that most porous media consist of a
matrix of repeating pore patterns. So, instead of computing the flow field in each pore,
we try to get away with modeling a single one of each repeating pore patterns observed
in a given porous media. The closure terms for each pore model can then be computed
for a range of flow speeds, allowing us to construct the closure terms accurately as
functions of position and flow speed:

r
›kuil
›t

þ
r

12
›jkuilkujl ¼ 2›ikplþ m›2

j kuilþ Sðxj; ujÞ: ð28Þ

Where S(xj, uj) is the closure functional established via the multi-scale method. Note
that the closure functional acts as a source term in the local volume averaged
momentum equation. Thus, existing Navier-Stokes solvers can be used to compute this
kind of problems with very little modification for the porous zones. Computational cost
associated with this multi-scale approach strongly depends on the level of uniformity
and complexity of the pores. For a uniform porous media, only one pore model is
needed. In our method, we do not need to refer to the concepts of permeability and the
Ergun coefficient. Nonetheless, we can easily derive the expressions for these by
comparing equations (26) and (27):

K ¼ 2mkuil
1

V

Z
Asf

TijnjdA

" #21

; ð29Þ

CE ¼

ffiffiffiffi
K

p

jkuiljkuil
k›ju0iu

0
jl2

kuil f kujl f

V

Z
Asf

njdA

" #
: ð30Þ

3.5 Averaging of the energy equation
Consider the fluid phase energy equation with constant specific heat and no heat
sources:
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ðrcpÞf
›Tf

›t
þ ›iuiTf

� �
¼ kf ›

2
j Tf : ð31Þ

Applying local volume averaging:

ðrcpÞf
›kTf l
›t

þ k›iuiTf l
� �

¼ kf k›j›jTf l: ð32Þ

Using equation (9), the diffusive term can be expanded as:

kf k›j›jTf l ¼ kf ›jk›jTf lþ
kf
V

Z
Asf

nj›jTf dA

¼ kf ›
2
j kTf lþ

kf
V
›j

Z
Asf

njTf dA þ
kf
V

Z
Asf

nj›jTf dA:

ð33Þ

Defining a local temperature deviation as:

Tf ¼ kTf l f þ T 0
f ; ð34Þ

and employing the divergence theorem, the first integral term in equation (33) becomes:Z
Asf

njTf dA ¼

Z
Asf

njkTf l f dA þ

Z
Asf

njT
0
f dA ¼

Z
V

›jkTf l f dV þ

Z
Asf

njT
0
f dA: ð35Þ

Noting that the variation of an averaged quantity within the averaging volume itself is
zero, the first integral vanishes. We then arrive at the averaged diffusion term:

kf k›j›jTf l ¼ kf ›
2
j kTf lþ

kf
V
›j

Z
Asf

njT
0
f dA þ

kf
V

Z
Asf

nj›jTf dA: ð36Þ

Averaging of the convection term yields:

k›iuiTf l ¼ ›ikuiTf lþ
1

V

Z
Asf

uiTf nidA: ð37Þ

The integral term on the right hand side of equation (37) vanishes due to no-slip
condition at the solid-fluid walls. Using equation (34), we decompose the convection
term as:

k›iuiTf l ¼ ›ikðkuil f þ u0iÞðkTf l f þ T 0
f Þl

¼ ›ikkuil f kTf l f þ kuil f T 0
f þ u0ikTf l f þ u0iT

0
f l:

ð38Þ

Knowing that kc 0l, the volume-averaged convection term is obtained:

k›iuiTf l ¼ ›ikuil f kTf l f þ 1›iku0iT
0
f l

f : ð39Þ

Substituting equations (39) and (36) in equation (32), we obtain the volume-averaged
energy equation for the fluid phase:
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1ðrcpÞf
›kTf l f

›t
þ

1

1
›ikuil f kTf l f þ ›iku0iT

0
f l

f

� �

¼ 1kf ›
2
j kTf l f þ

kf
V
›j

Z
Asf

njT
0
f dA þ

kf
V

Z
Asf

nj›jTf dA:

ð40Þ

Similarly, for the solid phase, the volume-averaged energy equation is:

ð1 2 1ÞðrcpÞs
›kTsl

s

›t
¼ ð1 2 1Þks›

2
j kTsl

s
þ

ks

V
›j

Z
Afs

njT
0
sdA þ

ks

V

Z
Afs

nj›jTsdA: ð41Þ

In many practical problems, the temperature difference between the solid and fluid
phases inside an REV is much smaller than the global scale temperature variation.
This condition is met if the REV is much smaller compared to global length scale, there
is no heat generation or loss inside the REV and temperature distribution does not vary
or vary slowly over time. Under these conditions, we can assume “local
thermodynamic equilibrium” which grants:

kTf l f ¼ kTsl
s
¼ kTl: ð42Þ

At the solid-fluid interface, the following boundary conditions apply:

T 0
f

���
Asf

¼ T 0
s

��
Asf

; ð43Þ

kf ›jTf

��
Asf

¼ ks›jTs

��
Asf

: ð44Þ

Also noting that nsf ¼ 2nfs, and adding equations (40) and (41), we obtain the local
volume averaged energy equation:

1ðrcpÞf þ ð1 2 1ÞðrcpÞs
� � ›kTl

›t
þ

1

1
ðrcpÞf ›ikuilkTl

¼ 1kf þ ð1 2 1Þks
� �

›2
j kTlþ

kf 2 ks

V
›j

Z
Asf

njT
0
f dA 2 1ðrcpÞf ›iku0iT

0
f l

f :
ð45Þ

Equation (45) introduces two additional closure terms for non-isothermal problems.
Nozad et al. (1985) derive governing equations for T 0

f and T 0
s and introduce constitutive

relationships between these temperature deviations and local volume averaged
temperature gradient via transformation vectors such as:

T 0
f ¼ f i›ikTlþ c T 0

s ¼ gi›ikTlþ j: ð46Þ

He then develops boundary value problems for fi and gi to be solved over a
representative unit-cell.

Amiri and Vafai (1994) treat the closure terms in equation (45) as an interfacial
heat transfer term between fluid and the solid phases. They use empirical
correlations for the specific surface area and heat transfer coefficient to close the
energy equation.

We handle the energy closure terms the same way as the momentum equation
counterparts with the multi-scale method. The last two terms on the right hand side
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of equation (45) can be computed over the chosen sample pore models for a range of
temperature values. Thus, we can avoid any constitutive or empirical relations by
taking a direct approach.

In the current work, we will focus on an isothermal problem. However, we presented
the derivation of the local volume averaged energy equation for completeness and as a
step towards our goal of simulating the transpiration cooling of the liquid rocket
engine injector face plate.

4. Numerical method and assessment of the present porous media model
We have shown that the local volume averaged continuity equation is unchanged and
momentum equation is very similar in form to the regular Navier-Stokes equations
with additional momentum source terms and the convection term modified by a factor
of porosity squared, 1 2. Thus, a Navier-Stokes solver can easily be modified to account
for porous media.

The proposed formulation has been implemented in Navier-Stokes solvers (Thakur
et al., 2002; Kamakoti et al., 2006). Porous zones are designated by coordinate ranges
and the previously calculated source terms are added to the momentum equation
components.

4.1 Isothermal flow through a drilled orifice plate
This test case consists of a porous plate placed in a cylindrical channel as shown in
Figure 5. The porous material used herein is a metallic plate with an array of uniform
and evenly distributed drilled holes. Owing to its simple and well defined pore
geometry, this case is attractive for testing the multi-scale method developed here. The
hole pattern details are shown in Figure 6.

This problem was studied before by Tully et al. (2005) both numerically and
experimentally. The porous plate was inserted in a cylindrical channel test section and
pressure drop values were recorded for a range of average flow speeds as summarized
in Table I.

4.1.1 Pore model. The porous metallic plate has a uniform array of circular through
holes distributed along its surface. Therefore, the pore shape is simply a circular tube.

Figure 5.
Problem domain
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In order to account for the momentum loss as the flow adjusts to enter the pores, we
extend the pore domain for three hole diameters towards upstream direction.

Isothermal fluid flow through the pore is computed for the range of flow speeds
listed in Table I. Equations (29) and (30) are evaluated to find the permeability and
Ergun coefficient for each flow speed in conjunction with equation (27) for the global
domain. Results of the pore-scale analysis are listed in Table II which clearly shows
that in contrast to conventional assumption, permeability and the Ergun coefficient
vary significantly with changing flow speeds and are not material properties.

4.1.2 Global domain. With the closure parameters obtained via the pore-scale
analysis, flow through the global domain as shown in Figure 5 is computed. In the
porous zone, Navier-Stokes equations are replaced with equation (27). Pressure drop
values across the centerline are plotted in comparison to the experimental results by
Tully et al. (2005) in Figure 7.

Figure 6.
Hole pattern details

R 0.010" / 0.0254 cm

∅ 0.020" / 0.0508 cm

a = 0.033" / 0.08382 cm

a

a

2a

2a

Fluid properties (air @ 24.2 8C)
Inlet filter velocities

(m/s)

Density (r) 1.1875 kg/m3 UD1 13.1
Dynamic viscosity (m) 1.8048 £ 1025 kg/m s UD2 16.3
Specific heat (cp) 1,006.2 J/kg K UD3 18.1
Thermal conductivity (k) 0.025913 W/m K UD4 20.1

UD5 23.3
UD6 25.8

Table I.
Summary of
experimental conditions

UD (m/s) ReD K (m22) CE

13.1 438 2.29 £ 10210 1.38 £ 1022

16.3 545 1.92 £ 10210 1.26 £ 1022

18.1 605 1.76 £ 10210 1.21 £ 1022

20.1 672 1.61 £ 10210 1.15 £ 1022

23.3 779 1.43 £ 10210 1.08 £ 1022

25.8 862 1.30 £ 10210 1.03 £ 1022

Table II.
Pore-scale analysis
results
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Figure 7 shows that the experimental data are closely reproduced by the multi-scale
method. The error relative to the experimental data ranges between 11 and 1 percent
for the lowest and highest flow speeds, respectively.

5. Summary and conclusion
A first principle based, multi-scale method is developed for numerical simulations of
fluid flow through porous media. In the present model, the effect of porous structures
on the global fluid flow is accounted for via local volume averaged governing
equations, while the closure terms are accounted for via averaging flow characteristics
around the pores. Hence, empirical dependence of simulations is removed without
requiring excessive computational cost. The performance of the model has been tested
for an isothermal flow case. Both the permeability and Ergun coefficient are shown to
be flow properties as opposed to the empirical approach which typically results in
constant values of these parameters independent of the flow conditions. Hence, the
present multi-scale approach is more versatile and can account for the possible changes
in flow characteristics.
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